m = ∮ 1 n Y − b ± b 2 − 4 a c 2 a Δ y Δ x ∏ x y 2 ] e − t i θ [ max 0 ≤ x ≤ 1 x e − x 2 {\displaystyle {\rm {m}} \over =\oint _{{}_{1}^{n}Y}^{\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}{{\frac {\Delta y}{\Delta x}}\prod _{x_{y^{2}}}^{\left]e^{-ti\theta }\right[}{\mathop {\max } _{0\leq x\leq 1}xe^{-x^{2}}\ }}}