Figure uguali: le isometrie (scuola media)

Quali sono le proprietà geometriche di uno specchio?

lezione
lezione
Figure uguali: le isometrie (scuola media)
Tipo di risorsa Tipo: lezione
Materia di appartenenza Materia: Matematica per la scuola media 1
Avanzamento Avanzamento: lezione completa al 25%
RiflessioneSpecchio
RiflessioneSpecchio

Cominciamo con lo studio delle trasformazioni geometriche che permettono di riprodurre una copia di una figura piana.

Queste trasformazioni devono per evidenti motivi mantenere le misure delle figure copiate e prendono quindi il nome di isometrie, dal greco uguale misura.



Simmetria assiale

modifica
 
Reflectional transformation

La simmetria assiale è la trasformazione che si ottiene rispecchiando la figura aldilà di una retta.

I punti dell'immagine giacciono sulla retta perpendicolare all'asse di simmetria alla stessa distanza dei punti della figura originale.



Simmetria assiale nel piano cartesiano

modifica

In generale date le coordinate di un punto e l'equazione dell'asse di simmetria esiste una formula che permette di ricavare le coordinate del punto simmetrico.

Riportiamo qui alcuni casi particolari che permettono di comprendere la relazione tra le coordinate di un punto e della sua immagine simmetrica.


Simmetria assiale rispetto all'asse y

modifica
 
Simmetria assiale asse Y

Nel piano cartesiano la simmetria assiale rispetto all'asse Y fa si che dalle coordinate del punto A (x,y) si ricavano facilmente le coordinate del suo punto simmetrico A' (-x,y).

Simmetria assiale rispetto all'asse x

modifica
 
Simmetria assiale asse X

Nel piano cartesiano la simmetria assiale rispetto all'asse X fa si che dalle coordinate del punto A (x,y) si ricavano facilmente le coordinate del suo punto simmetrico A' (x,-y).

Simmetria assiale rispetto alla bisettrice I e III quadrante

modifica
 
Simmetria assiale bisettrice I III

Nel piano cartesiano la simmetria assiale rispetto alla bisettrice del I e del III quadrante fa si che dalle coordinate del punto A (x,y) si ricavano facilmente le coordinate del suo punto simmetrico A' (y,x).

Simmetria assiale rispetto alla bisettrice II e IV quadrante

modifica
 
Simmetria assiale bisettrice II Iv

Nel piano cartesiano la simmetria assiale rispetto alla bisettrice del II e del IV quadrante fa si che dalle coordinate del punto A (x,y) si ricavano facilmente le coordinate del suo punto simmetrico A' (-y,-x).

Simmetria centrale

modifica

Come per la simmetria assiale in generale date le coordinate di un punto e quelle del centro di simmetria esiste una formula che permette di ricavare le coordinate del punto simmetrico.

Riportiamo qui alcuni il caso particolare della simmetria centrale rispetto all'origine degli assi, cosa che permetto di comprendere facilmente la relazione tra le coordinate di un punto e della sua immagine simmetrica.


Simmetria centrale rispetto all'origine

modifica
 
Simmetria centrale

Nel piano cartesiano la simmetria centrale rispetto all'origine fa si che dalle coordinate del punto A (x,y) si ricavano facilmente le coordinate del suo punto simmetrico A' (-x,-y).

Simmetrie su scratch (coding)

modifica

Simmetrie su geogebra

modifica

Traslazione

modifica


Rotazione

modifica

Bibliografia

modifica

Collegamenti esterni

modifica