Angoli (scuola media)

Un angolo è la parte di pianoVK compresa tra due semiretteVK aventi l'origineVK in comune.

lezione
lezione
Angoli (scuola media)
Tipo di risorsa Tipo: lezione
Materia di appartenenza Materia: Matematica per la scuola media 1
Avanzamento Avanzamento: lezione completa al 50%

Una seconda definizione, più dinamica, associa l'angolo alla rotazione che una delle due semirette fa rispetto all'altra, un buon esempio è il movimento delle lancette dell'orologio ed anche il movimento dei pianeti in orbita o una qualsiasi rotazione. Nell'immagine qui sotto i raggi delle orbite della terra e di mercurio disegnano dinamicamente un angolo.

Mercuryorbitsolarsystem
Mercuryorbitsolarsystem


Angolo convesso ed angolo concavo

modifica
 
Angolo concavo ed angolo convesso

Un angolo è detto convesso se non contiene i prolungamenti dei suoi lati, nella figura l'angolo   è convesso e l'angolo   è concavo.

 
Angolo concavo ed angolo convesso

Aggiungendo i punti   possiamo identificare gli angoli con le lettere latine maiuscole, l'angolo convesso è l'angolo   mentre quello concavo è  , per convenzione gli angoli girano in senso antiorario.

Misura degli angoli

modifica

Vi sono due sistemi principali per misurare gli angoli nei quali come unità di misura si usano i gradi oppure i radianti.
Nella misura in gradi un angolo giro, immaginandoci le semirette come lancette di un orologio un giro completo, viene suddivisa in 360° gradi, nella seconda la misura dell'angolo corrisponde alla lunghezza dell'arco di circonferenza misurata in raggi.

Misura in gradi sessagesimali

modifica
 
Goniometro

Un angoloVK misura un grado gradoVK se è la trecentosessantesima parte di un angolo giro, cioè di una rotazione completa.
I sottomultipli del grado seguono un sistema sessagesimale:

1° = 60', un grado corrisponde a 60 primi, 

e

1' = 60"  ed un primo corrisponde a 60 secondi.

La nostra misura del tempo si avvale dello stesso sistema infatti 1 ora = 60 minuti e 1 minuto = 60 secondi.

Angoli noti

modifica

In base alla loro grandezza gli angoli vengono chiamati...

Misura in radianti

modifica

Nella figura seguente si mostra che la misura di una circonferenza di diametro 1 è  , numero che può essere conosciuto solo approssimativamente e che nei calcoli consideriamo uguale a 3,14.

 
Pi-unrolled-720

Considerando che il raggio è metà della circonferenza e pensando all'angolo come al percorso fatto in orbita per compiere un giro completo corrisponde a percorrere 3,14 diametri, o meglio 6,28 raggi, e quindi

 

La misura di un angolo giro in radianti, cioè la misura della circonferenza misurata in raggi è proprio  .

Non è difficile comprendere che:

  •  
  •  
  •  

In generale la misura di un angolo in radianti è un numero puro, cioè senza dimensioni che corrisponde al rapporto tra l'arco di circonferenza e il raggio

 
Radian measure
 
 


La misura di un angolo in radianti non dipende dalla circonferenza considerata infatti osservando la figura

 
The Economic Journal Volume 1 - p498

si comprende che all'aumento della lunghezza dell'arco corrisponde un aumento del raggio e quindi  

Le formule che permettono di passare dalla misura di un angolo in radianti   a quella in gradi   e viceversa sono

 
 

Angoli noti in radianti

modifica



Angoli consecutivi ed angoli adiacenti

modifica

Angoli di complemento

modifica

Relazioni tra gli angoli

modifica

Due rette tagliate da una trasversale

modifica
 
Angles between parallel lines and a transversal


A secondo delle posizioni che gli angoli assumono relativamente alle rette e gli uni nei confronti degli altri vengono denominati:

  • gli angoli verdi sono una coppia di angoli alterni interni
  • gli angoli gialli sono alterni esterni
  • i blu e i rossi sono corrispondenti
  • gli angoli rosa sono angoli coniugati interni
  • gli angoli ocra sono coniugati esterni

Se le rette sono parallele:

  • gli angoli alterni interni sono uguali tra loro
  • gli alterni esterni sono uguali
  • i corrispondenti sono uguali tra loro
  • gli angoli coniugati sono supplementari, la loro somma fa 180°

Bisettrice

modifica

Bibliografia

modifica

Collegamenti esterni

modifica